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Abstract: Railway safety and operational efficiency represent 

fundamental cornerstones of contemporary transportation, 

demanding ongoing innovations in monitoring systems. This 

review meticulously explores the latest advancements in out-of-

round wheel detection technologies, which are crucial in averting 

derailments and curtailing maintenance expenditures. The study 

synthesizes progress in sensor technologies, such as high-

resolution imaging, ultrasonic sensors, and acoustic emission 

detectors, facilitating the early detection of wheel irregularities. By 

merging these sensors with advanced signal processing algorithms 

and cutting-edge machine learning techniques, current systems 

can accomplish real-time surveillance and predictive 

maintenance, thus diminishing the chances of catastrophic 

failures. The review evaluates diverse methodologies adopted for 

detecting out-of-round wheels, juxtaposing traditional manual 

inspection techniques with automated systems. It underscores the 

advantages of rapid data acquisition and the utilization of 

sophisticated analytics in improving detection accuracy across 

various environmental conditions. Furthermore, the discussion 

encompasses the challenges associated with sensor calibration, 

data noise, and the scalability of these systems within high-speed 

railway networks. Through a thorough assessment of 

experimental studies and real-world implementations, the review 

pinpoints key performance indicators and delineates the prospects 

of integrating these systems into existing railway safety protocols. 

It also emphasizes the necessity for standardized benchmarks to 

comprehensively evaluate system reliability and overall 

performance. Looking towards the future, the paper suggests 

avenues for further research, such as the creation of multi-sensor 

fusion frameworks and adaptive algorithms to enhance diagnostic 

precision. Ultimately, these advancements hold the potential to 

significantly bolster railway safety and operational efficiency, 

thereby contributing to the modernization of global rail 

infrastructure. 
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I. INTRODUCTION

The global railway industry plays a pivotal role in

facilitating efficient transportation of goods and passengers, 

contributing to economic growth and sustainability. 

However, ensuring the safety and operational efficiency of 

railways remains a challenge due to wear and irregularities in 

critical components, such as wheels. Out-of-round (OOR) 

wheels, which exhibit deviations from the ideal circular 

geometry, are among the most common issues faced by rail 

operators worldwide (Figure 1). These irregularities, caused 

by factors such as uneven wear, thermal stresses, and 

manufacturing defects, can significantly affect train 

dynamics, leading to track damage, excessive vibrations, and 

increased maintenance costs [1]. 

[Fig.1: Diagram Showing an Ideal Wheel Versus an Out-of-

Round Wheel] [1] 
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A. Impact of OOR Wheels on Railway Systems 

OOR wheels compromise railway performance by 

increasing rolling resistance and energy consumption, while 

also imposing structural stress on both the wheel set and the 

track. Studies indicate that OOR wheels contribute to 

approximately 25–30% of maintenance activities related to 

wheel-track interactions (Table I). Moreover, OOR 

conditions have been linked to the propagation of wheel 

cracks, posing critical safety risks [2]. A figure demonstrating 

the relationship between OOR wheel severity and track 

damage progression could effectively illustrate these impacts 

(Figure 2). 

Table-I: Statistics on Maintenance Costs and Safety 

Risks Associated with OOR Wheels 

Category Metric Value Notes 

Maintenanc

e Costs 

Average 

repair cost 

per wheel 

$500–$1,200 

per incident 

Varies based 

on damage 

severity 

 Inspection 

frequency 

Every 6 

months 

Recommende

d for high-risk 

vehicles 

 Downtime 

costs 

$1,000–

$3,000 per 

vehicle 

Due to 

extended 

maintenance 

times 

 Total 

annual costs 

$10,000–

$30,000 per 

fleet vehicle 

Includes 

inspection, 

repair, and 

downtime 

Safety 

Risks 

Increased 

derailment 

risk 

35% higher 

than normal 

wheels 

Based on 

comparative 

risk studies 

 
Brake 

system 

failures 

25% 

probability in 

severe cases 

Linked to 

uneven wear 

patterns 

 
Accidents 

attributed to 

OOR 

15% of all 

railway 

incidents 

Historical data 

from case 

studies 

 
Fatalities 

due to OOR 

wheels 

5 fatalities per 

year (average) 

Based on 

industry-wide 

records 

 

 

[Fig.2: A Graph Correlating OOR Severity with Track 

Damage Levels Over Time] [2] 

 

B. Current Methods and Limitations 

Traditional methods for detecting OOR wheels, including 

manual inspections and strain gauge-based systems, have 

proven insufficient due to their labor-intensive nature and 

inability to provide real-time diagnostics [3]. Recent 

advancements in sensing technologies, such as optical 

systems and vibration-based detectors, offer enhanced 

precision but are often limited by high costs and challenges 

in deployment under varying operational conditions (Table 

II). 

Table-II: Comparative Analysis of Traditional Versus 

Modern OOR Wheel Detection Methods 

Aspect 
Traditional 

Methods 
Modern Methods 

Technology 

Used 

Manual inspection 

and mechanical 
gauges 

Sensors, AI algorithms, 

and real-time 
monitoring systems 

Accuracy 
Moderate (error 

margin ~10-15%) 
High (error margin 

<5%) 

Detection 
Speed 

Time-intensive 

(hours per 
inspection) 

Instantaneous (real-
time) 

Cost 

Low initial 

investment, high 

long-term costs 
(labor) 

High initial investment, 
low long-term costs 

Labor 

Requirement 

High (requires 

skilled technicians) 

Minimal (automated 

systems) 

Maintenance 

Needs 

Frequent calibration 

and repairs 

Minimal, self-diagnostic 

features in advanced 
systems 

Scalability 

Limited to 

individual vehicle 
inspections 

Highly scalable for 
fleet-wide monitoring 

Data 
Analytics 

None or minimal 

(manual record-
keeping) 

Advanced analytics with 

predictive maintenance 
insights 

Safety 
Impact 

Moderate (missed or 

delayed detections 
possible) 

High (early detection 
minimizes risks) 

Implementat

ion 

Challenges 

Easy to implement 

but labor-intensive 

Requires training and 

initial system setup 

C. Emergence of Smart Monitoring Systems 

The integration of artificial intelligence (AI), Internet of 

Things (IoT), and predictive maintenance frameworks has 

transformed railway monitoring. AI-powered systems, 

capable of real-time anomaly detection and predictive 

analytics, are emerging as key enablers for improving 

detection accuracy and reducing operational downtime 

(Figure 3 provides a schematic of an AI-enabled detection 

system).  

For instance, a study by [4]) demonstrated a 35% 

improvement in detection efficiency using machine learning 

algorithms in vibration-based systems. 
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[Fig.3: Schematic Diagram of an AI-IoT-Enabled Real-

Time Detection System] [4] 

D. Need for a Comprehensive Review 

Despite technological advancements, there remains a gap in 

systematically analyzing and comparing the efficacy of these 

detection systems across different operational scenarios. This 

review aims to address this gap by synthesizing existing 

knowledge, highlighting advancements in detection 

technologies, and proposing future directions for optimizing 

railway safety and efficiency. Tables and figures 

summarizing current technologies, global case studies, and 

predictive modeling frameworks will be presented 

throughout the review to support this analysis. 

II. FUNDAMENTALS OF OUT-OF-ROUND WHEELS 

Out-of-round (OOR) wheels are a critical challenge in the 

railway industry, characterized by geometric deviations from 

the ideal circular wheel shape. These deviations occur due to 

multiple factors, including mechanical wear, manufacturing 

inconsistencies, and operational conditions [5]. 

Understanding the causes, types, and implications of OOR 

wheels is essential for improving railway safety and 

efficiency.  

A. Causes of Out-of-Round Wheels 

OOR wheels typically result from several interacting 

factors: 

▪ Mechanical Wear: Continuous interaction between 

wheels and tracks leads to uneven material removal, 

particularly at braking points and during high-speed 

operations [6]. This wear pattern is illustrated in Figure 4, 

showing the progression of flat spots and polygonal shapes. 

[Fig.4: Diagram Illustrating the Progression of Flat Spots Due to Wear] [6] 
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▪ Thermal Stress: Excessive heat generated during braking 

can cause thermal expansion and contraction, leading to 

residual stresses and irregularities (Table III). 

▪ Manufacturing Defects: Even small deviations in wheel 

fabrication can propagate into significant OOR conditions 

under operational loads [7]. 
 

Table-III: Overview of Thermal Stresses and Their Effects on Wheel Geometry 

Aspect Description Effects on Wheel Geometry 

Source of Thermal 

Stresses 

Heat generated by braking, wheel-rail contact 
friction, and environmental temperature 

variations 

Increased localized heating in specific 

areas 

Temperature Gradient 
Uneven temperature distribution across the 

wheel surface 

Distortion of wheel shape due to thermal 

expansion 

Material Properties 

Variations in thermal conductivity and 

thermal expansion coefficient of wheel 

materials 

Differential expansion leading to micro-
cracks or warping 

Frictional Heat Intense heat generation during braking cycles 
Formation of flat spots and increased 

wear 

Repetitive Heating Cyclic heating and cooling during operation 
Fatigue stresses causing deformation and 

residual stresses 

Critical Temperatures 
Exceeding heat tolerance limits of wheel 

materials 

Permanent plastic deformation or 

cracking 

Impact on Maintenance 
Increased frequency of repairs and 

inspections 

Higher maintenance costs and 

operational disruptions 

Safety Implications 
Risk of wheel failure under excessive thermal 

stress 

Potential derailments and operational 

hazards 

B. Types of OOR Wheels 

OOR wheels can be classified into various categories based 

on their geometry and frequency characteristics: 

▪ Flat Spots: These occur due to wheel locking during 

emergency braking; 

creating localized flattening on the wheel surface [1]. 

▪ Polygonal Wheels: Repetitive irregularities around the 

wheel circumference cause polygonal deformation, as 

shown in Figure 5. 

 

 

[Fig.5: Cross-Section Diagram of Polygonal and Eccentric Wheels] [1] 

 

▪ Eccentric Wheels: Off-center deviations caused by 

imbalanced loading or axle misalignment. 

A comparative summary of these types, along with their 

primary causes and effects, is 

presented in Table IV. 
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Table-IV: Comparative Table of OOR Wheel Types, 

Causes, and Operational Effects 

OOR Wheel 

Type 
Primary Causes Operational Effects 

Flat Spots 
Emergency braking, 

skidding on tracks 

Increased vibration, noise, 

accelerated track wear 

Eccentric 
Wheels 

Manufacturing defects, 
improper installation 

Uneven wheel-rail contact, 
reduced ride quality 

Oval Wheels 
Material fatigue, wear 

over time 

Periodic impact loads, 

potential derailment risks 

Thermal 

Cracks 

Overheating due to 
braking, thermal 

expansion 

Structural weakening, risk 

of catastrophic failure 

Shelling 
Material defects, high 

contact stresses 

Increased rolling resistance, 

risk of spalling 

C. Impact of OOR Wheels on Railway Operations 

The consequences of OOR wheels extend beyond the 

rolling stock, affecting the entire railway system: 

▪ Increased Dynamic Forces: OOR wheels generate 

dynamic loads that lead to vibrations, which propagate 

through the wheel-track interface, as depicted in Figure 6 

[8]. These vibrations increase wear on both the wheel and 

track. 

▪ Structural Fatigue: Repeated high-frequency impacts 

from OOR wheels accelerate fatigue in critical structural 

components, such as rail joints and sleepers [5]. 

▪ Noise and Comfort Issues: OOR wheels contribute to 

noise pollution and reduced passenger comfort due to 

uneven rolling motion. A study by Thomas & Lee (2019) 

reported that noise levels increase by up to 15 dB when 

OOR conditions are present. 

 

 

 

 

[Fig.6: Graph Showing Dynamic Load Variations Caused by OOR Wheels] [8] 

D. Detection Challenges 

The detection of OOR wheels poses significant challenges 

due to operational complexities. Manual inspections are time-

intensive and subjective, while automated systems often 

struggle with sensor limitations in harsh environmental 

conditions (Table V). 
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Table-V: Challenges in OOR Wheel Detection and 

Corresponding Technological Solutions 

Challenge Technological Solution 

1. Limited detection 

range 

Use of advanced sensors like laser or 

ultrasound to extend detection range and 

improve precision. 

2. Environmental noise 

and interference 

Integration of noise filtering algorithms and 

multi-sensor fusion to minimize false 

detections. 

3. Inconsistent data 

quality 

Deployment of machine learning algorithms 

to automatically clean and preprocess data for 

improved accuracy. 

4. High speed detection 

Use of high-speed cameras and real-time 

processing units to capture wheel profiles at 

high velocities. 

5. High cost of 

specialized equipment 

Development of more affordable, modular, 

and scalable sensor systems such as RFID and 

3D profilometers. 

6. Difficulty in 

differentiating OOR 

wheels from normal wear 

Implementation of pattern recognition 
algorithms and AI-based classification 

systems to differentiate based on wheel 

profiles. 

7. Accessibility to wheel 

surfaces 

Utilization of non-contact sensing 

technologies like laser or radar systems for 

easier access to wheels. 

8. Data overload and 

analysis complexity 

Cloud-based analytics platforms that process 
large amounts of data efficiently and provide 

actionable insights. 

9. Integration with 
existing railway 

infrastructure 

Development of retrofittable systems that can 
seamlessly integrate with current railway 

monitoring setups. 

10. Variability in wheel 

wear patterns 

Machine learning models trained on extensive 

datasets to predict wear patterns and identify 

OOR wheels accurately. 

III. ADVANCEMENTS IN DETECTION 

TECHNOLOGIES 

The early detection of out-of-round (OOR) wheels is 

critical to ensuring railway safety, reducing maintenance 

costs, and improving operational efficiency. Technological 

advancements in recent years have transformed OOR wheel 

detection from labor-intensive manual inspections to 

sophisticated, automated, and real-time systems. This section 

explores the state-of-the-art detection technologies, 

highlighting their working principles, advantages, 

limitations, and areas of application. 

A. Traditional Detection Methods 

Historically, OOR wheels were identified through manual 

inspections or mechanical devices such as strain gauges 

mounted on tracks. While effective for basic diagnostics, 

these methods were labor-intensive, time-consuming, and 

limited by their inability to provide real-time feedback ([6] 

Table VI). 

▪ Strain Gauge Systems: These systems measure 

deformation caused by wheel-rail interaction. Although 

widely used, they struggle with data noise in dynamic 

environments as shown in Figure 7. 

 

 

Table-VI: Overview of Traditional OOR Detection 

Methods, Advantages, and Limitations 

Detection 

Method 
Advantages Limitations 

Visual 
Inspection 

- Simple and inexpensive. 
- Provides immediate 

results. 

- Effective for identifying 
severe defects. 

- Subject to human error. 

- Time-consuming and labor-

intensive. 
- Limited detection of minor 

defects. 

- Difficult to apply at high speeds. 

Manual 
Measurement 

Tools 

- Accurate for small-scale 

assessments. 

- Low cost for on-site 
measurement. 

- Labor-intensive and slow. 

- Requires manual intervention, 
leading to inconsistent results. 

- Cannot be used efficiently in 

real-time or at high speeds. 

Trackside 

Acoustic 

Sensors 

- Non-intrusive and can be 

applied during train 

operation. 
- Relatively low cost. 

- Limited by environmental noise. 

- May miss minor wheel 

irregularities. 

- Sensitivity issues in high-speed 

conditions. 

Ultrasonic 

Testing 

- Effective in detecting 
cracks and structural 

faults. 

- High sensitivity and 
accuracy for internal 

wheel defects. 

- Requires access to wheel 

surface. 
- Expensive equipment. 

- Not suitable for real-time 

detection at high speeds. 

Laser Profiling 

- Accurate and precise in 
measuring wheel profile. 

- Can detect even minor 

wheel shape deviations. 

- High installation and 

maintenance costs. 

- Limited effectiveness in poor 
weather conditions. 

- Needs trackside infrastructure. 

Contact-Based 
Gauges 

- Accurate and direct 

measurement. 
- Low-cost and reliable for 

simple detection. 

- Requires the train to stop for 

measurement. 

- Not suitable for high-speed 
detection. 

- Wear and tear on gauge 

equipment can affect accuracy. 

Wheel Impact 

Detectors 
(WID) 

- Provides real-time 

feedback on wheel-rail 
contact. 

- Easy integration with 

existing railway systems. 
- Continuous monitoring. 

- Primarily focused on impact 

rather than wheel roundness. 

- Limited sensitivity for detecting 
early OOR problems. 

- Requires regular calibration. 

 

 

[Fig.7: Illustration of a Strain Gauge System Installed on 

a Rail Track] [6] 

B. Modern Detection Technologies 

Recent advancements in sensor technologies and data 

processing have led to the development of automated, 

accurate, and real-time detection systems: 

i. Optical Detection Systems 

Optical detection relies on high-speed cameras and laser 

scanners to capture wheel geometry and surface irregularities. 

These systems provide non-

contact, high-resolution data, 

allowing for precise 
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identification of flat spots and polygonal shapes [9]. 

▪ Advantages: High accuracy, non-invasive, and capable of 

detecting multiple wheel irregularities. 

▪ Limitations: Susceptibility to dust, vibration, and 

environmental interference. And Table VII shows 

Comparison of optical detection systems with other 

modern methods. 

Table-VII: Comparative Analysis of Optical, Acoustic, 

and Vibration-Based Systems 

Feature Optical Systems Acoustic Systems 
Vibration-Based 

Systems 

Principle of 
Operation 

Uses light for 

measurement (e.g., 

laser, infrared) 

Uses sound waves 

(e.g., ultrasound, 

echolocation) 

Detects vibrations or 

mechanical 

movements 

Accuracy 

High accuracy, can 

measure small 

displacements 

Moderate 

accuracy, affected 

by 
noise/interference 

Moderate accuracy, 

sensitive to 

environmental 
conditions 

Sensitivity 

High sensitivity to 

small changes in 

position 

Medium 

sensitivity, 
affected by 

medium properties 

High sensitivity to 
structural changes 

Distance 
Range 

Long-range 

(depending on light 

source) 

Moderate range, 

limited by medium 

properties 

Limited to short-

range measurements 
(depending on sensor 

type) 

Environmenta

l Suitability 

Sensitive to dust, 

fog, and certain 
materials 

Effective in many 
environments, but 

can be hindered by 

air quality 

Suitable for harsh 
environments but 

depends on vibration 

transmissibility 

Cost 
Expensive due to 

specialized 

equipment 

Moderate, cost-
effective in some 

applications 

Generally lower cost, 
but varies with 

complexity 

Applications 

Structural health 
monitoring, 

precision 

measurement 

Medical imaging, 

underwater 
exploration 

Structural monitoring, 

mechanical systems 
analysis 

Limitations 

Susceptible to 
external light 

conditions, requires 

line of sight 

Performance drops 
with distance and 

in noisy 

environments 

Can be influenced by 

ambient noise and 
temperature changes 

Maintenance 

Low maintenance 

but requires 
calibration 

Moderate 
maintenance due to 

acoustic 

calibration 

Requires regular 

checks for sensor 

calibration and 
environmental 

adjustments 

ii. Acoustic Emission Sensors 

These systems detect sound waves generated by OOR 

wheels during rolling operations. Variations in acoustic 

signals indicate irregularities in wheel geometry [10]. 

▪ Advantages: Can operate at high speeds and across large 

networks. 

▪ Limitations: Affected by external noise pollution. 
 

 

[Fig.8: Graph Comparing Acoustic Signal Patterns of 

Normal and OOR Wheels] [10] 

iii. Vibration-Based Detection 

Vibration-based systems monitor dynamic responses 

caused by OOR wheels during operation. These systems are 

often equipped with accelerometers and gyroscopic sensors 

[11]. 

▪ Advantages: Effective in detecting both surface 

irregularities and internal damage. 

▪ Limitations: Requires advanced signal processing to filter 

environmental noise. 

C. Integration of AI and IoT 

The integration of artificial intelligence (AI) and the 

Internet of Things (IoT) has revolutionized OOR wheel 

detection. 

▪ Machine Learning Models: AI algorithms analyze sensor 

data to predict and classify wheel irregularities in real-time 

[12]. A study demonstrated a 90% accuracy rate using 

supervised learning for OOR detection [13]. 

▪ IoT-Enabled Monitoring Systems: IoT devices enable 

remote monitoring and centralized data storage, allowing 

railway operators to track wheel health across entire 

networks (Figure 9). 

 

 

[Fig.9: IoT-Enabled Detection System Architecture] [12] 

Table-VIII: Performance Comparison of AI-Powered 

Detection Systems Versus Traditional Methods 

Metric 
AI-Powered 

Detection Systems 

Traditional Detection 

Methods 

Accuracy 
High (typically 

90%-99%) 

Moderate (typically 70%-

85%) 

Speed of 

Detection 

Real-time or near 

real-time 

Delayed or batch 

processing 

False Positive 

Rate 
Low Higher 

False 

Negative Rate 
Low Moderate to High 

Adaptability 
Highly adaptive to 

new patterns 
Limited adaptability 

Cost of 

Implementati

on 

High initial cost, 
lower over time 

Lower initial cost, higher 
long-term operational cost 

Scalability Easily scalable Harder to scale 

Data 

Dependency 

Requires large 

datasets for training 

Often doesn't require large 

datasets 

Maintenance 
Ongoing updates 

and training 

Minimal once 

implemented 

Human 
Intervention 

Minimal once 
trained 

High dependency on 
human expertise 
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D. Hybrid Detection Systems 

Hybrid systems combine multiple detection technologies to 

enhance accuracy and reliability. For instance, a hybrid 

system integrating optical sensors with vibration analysis was 

shown to reduce false positives by 25% [13]. 

▪ Figure 10 shows the Diagram of a hybrid OOR wheel 

detection system integrating optical, acoustic, and 

vibration sensors. 

 

 

[Fig.10: Hybrid Detection System Diagram] [13] 

IV. ROLE OF AI AND IOT IN DETECTION SYSTEMS 

Artificial Intelligence (AI) and the Internet of Things (IoT) 

have revolutionized the detection of out-of-round (OOR) 

wheels in railway systems. These technologies have enabled 

real-time monitoring, predictive maintenance, and enhanced 

decision-making, significantly improving railway safety and 

efficiency. This section delves into the integration of AI and 

IoT in detection systems, highlighting their applications, 

benefits, and challenges. 

A. Artificial Intelligence in OOR Detection 

AI has transformed OOR detection by leveraging advanced 

data analytics, pattern recognition, and machine learning 

(ML) techniques. 

i. Machine Learning Algorithms 

ML models, such as support vector machines (SVM), 

decision trees, and neural networks, have demonstrated high 

accuracy in detecting OOR wheels from complex datasets [8]. 

For instance, supervised learning models trained on vibration 

data achieved an accuracy of 92% in detecting polygonal 

wheel defects. 

▪ Advantages: Real-time anomaly detection reduced false 

positives, and adaptability to varying operational 

conditions. 

▪ Challenges: Dependency on large, labeled datasets and 

computational resources (Table IX). 

 

Table-IX: Summary of ML Algorithms Used in OOR 

Detection, with Their Advantages and Limitations 

ML Algorithm Advantages Limitations 

Random Forest 
(RF) 

- High accuracy and robustness 
for imbalanced data. 

- Requires substantial 

memory and computational 

power for large datasets. 

 - Effective in handling non-

linear relationships. 

- May overfit if not properly 

tuned. 

Support Vector 

Machine 
(SVM) 

- Effective for smaller datasets 

with clear margins of 
separation. 

- Struggles with large datasets 

and complex multi-class 
problems. 

 - Provides high precision for 
binary classification tasks. 

- Sensitive to feature scaling 
and parameter selection. 

Neural 

Networks (NN) 

- High accuracy with large and 

complex datasets. 

- Requires a large volume of 

data for effective training. 

 - Ability to model complex, 

non-linear relationships. 

- Computationally expensive 

and prone to overfitting. 

Gradient 
Boosting (GB) 

- Excellent performance with 
minimal tuning. 

- Slow training process, 

particularly with large 

datasets. 

 - Handles missing data well 

and is interpretable. 

- Susceptible to overfitting if 

too many trees are used. 

K-Nearest 

Neighbors 
(KNN)  

- Simple and easy to 

implement. 

- Computationally expensive 

for large datasets due to 
distance calculations. 

 - Effective with well-separated 
classes. 

- Sensitive to noise and 
choice of the value of K. 

Deep Learning 

(DL) 

- Superior performance in 
complex and unstructured data 

analysis, such as images or 

signals. 

- Requires high computational 

resources and large datasets. 

 - Enables automatic feature 

extraction. 

- Challenging to interpret and 

explain. 
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ii. Deep Learning Approaches 

Deep learning models, such as convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs), 

have further improved detection capabilities by analyzing 

high-dimensional data, such as acoustic signals and optical 

images [14]. 

▪ CNNs have been effective in identifying surface 

irregularities from high-resolution optical scans. 

▪ RNNs have been used to predict OOR wheel progression 

by analyzing historical operational data. 

B. Internet of Things in OOR Detection 

IoT enables the seamless integration of sensors, 

communication networks, and cloud-based platforms to 

monitor wheel health in real time. 

i. IoT-Enabled Monitoring Systems 

IoT systems employ wireless sensor networks (WSNs) to 

collect data from multiple sensors, such as accelerometers, 

strain gauges, and acoustic emission sensors, installed along 

the track or train [15]. This data is transmitted to a central 

cloud platform for processing and analysis. 

▪ Advantages: Real-time data collection, remote 

monitoring, and centralized data storage. 

▪ Challenges: Data security, high initial costs, and sensor 

reliability under harsh conditions. 

ii. Predictive Maintenance with IoT 

Predictive maintenance systems uses IoT data to forecast 

potential failures, enabling proactive intervention. For 

example, vibration patterns from IoT sensors can predict 

when a wheel will exceed tolerable OOR thresholds [16]. 

▪ Predictive maintenance reduces downtime by 30–40% and 

lowers maintenance costs by up to 25% (Table X). 

Table-X: Comparison of Reactive and Predictive 

Maintenance Systems 

Aspect 
Reactive Maintenance 

Systems 

Predictive Maintenance 

Systems 

Definition 
Maintenance performed 

after a failure occurs. 

Maintenance based on 

predicting failures before they 

occur. 

Approach Reactive and event-driven. Proactive and data-driven. 

Technology 
Limited to basic diagnostic 

tools. 

Advanced sensors, IoT, machine 

learning, and big data analytics. 

Cost 

Implications 

Lower initial investment but 
higher long-term costs due 

to unplanned downtime. 

Higher initial investment but 
significant savings in long-term 

operations. 

System 

Downtime 

High downtime due to 

unexpected failures. 

Minimal downtime as failures 

are predicted and addressed 
beforehand. 

Reliability 
Less reliable as it addresses 

issues post-failure. 

Highly reliable due to early 

detection and prevention of 

failures. 

Resource 
Usage 

Inefficient, leading to higher 

resource consumption 

during repairs. 

Efficient resource allocation 

based on predicted maintenance 

needs. 

Examples 
Manual inspection and 

repair after wheel failure. 

Real-time OOR detection using 

IoT and AI for predictive 

analytics. 

Scalability 
Limited scalability due to 

manual processes. 

Highly scalable with automated 

and interconnected systems. 

Environmental 

Impact 

Higher due to sudden 

disruptions and inefficient 
repairs. 

Lower due to optimized 

maintenance scheduling and 
resource usage. 

C. AI and IoT Integration 

The integration of AI and IoT has resulted in smart 

detection systems capable of autonomous operation and 

continuous learning. 

i. Real-Time Anomaly Detection 

AI models process IoT sensor data in real time, enabling 

instant detection of OOR conditions. For instance, a hybrid 

AI-IoT system implemented in a European railway network 

reduced detection time by 50% compared to traditional 

methods [16]. 

[Fig.11: A Flowchart Showing the Data Flow in an AI-IoT-Integrated Detection System] [16] 
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ii. Data Analytics and Decision-Making 

IoT platforms integrated with AI enable advanced 

analytics, such as trend analysis and root cause identification. 

These systems provide actionable insights for maintenance 

planning and operational optimization ([17], Table XI). 

Table-XI: Key Functionalities of AI-IoT Systems for 

OOR Wheel Detection 

Functionality Description 
Impact on OOR 

Detection 

Real-Time Data 
Collection 

Sensors (acoustic, vibration, 

optical) continuously 
monitor wheel conditions 

during operations. 

Enables timely detection 

of out-of-round wheels 
and minimizes system 

downtime. 

Edge Computing 

Localized data 

preprocessing near sensors 

for quick analysis. 

Reduces latency and 

optimizes network 

bandwidth usage. 

Advanced 
Analytics 

AI models analyze sensor 

data to identify patterns and 

predict failures. 

Improves accuracy in 

detecting defects and 
enables predictive 

maintenance. 

Predictive 

Maintenance 

AI forecasts potential 

failures based on historical 
and real-time data trends. 

Prevents unexpected 

breakdowns and enhances 
operational efficiency. 

Cloud Integration 

Centralized data storage and 

high-level analytics for 

deeper insights. 

Facilitates large-scale 

data management and 
system-wide performance 

monitoring. 

User-Friendly 

Interfaces 

Dashboards and mobile apps 

for maintenance personnel 
to view alerts and analytics. 

Simplifies decision-

making and improves 
response time. 

Interconnectivity 

(IoT) 

Communication between 

sensors, edge devices, and 

cloud platforms. 

Enables seamless data 

flow and system 

integration. 

Machine Learning 

Optimization 

Continuous improvement of 

detection algorithms through 
feedback loops. 

Increases the accuracy 

and adaptability of the 
detection system. 

Energy Efficiency 

Optimized power 

consumption for sensors and 

devices. 

Reduces operational costs 

and ensures system 

sustainability. 

Scalability 

Ability to expand and adapt 

to new rail networks and 

additional sensors. 

Supports broader 

implementation across 

various railway systems. 

D. Challenges and Future Directions 

i. Challenges 

▪ Data Volume: IoT generates massive amounts of data, 

which require robust storage and processing capabilities. 

▪ Cybersecurity: IoT networks are vulnerable to hacking, 

necessitating secure data transmission protocols. 

▪ Algorithm Interpretability: Many AI models, especially 

deep learning, lack transparency, making it difficult to 

interpret their decision-making processes. 

ii. Future Directions 

▪ Development of explainable AI models for transparent 

decision-making. 

▪ Enhanced sensor durability and energy efficiency to 

improve IoT reliability. 

▪ Adoption of edge computing to process IoT data locally 

and reduce latency (Figure 5 illustrates an edge-computing 

architecture for OOR detection). 

V. GLOBAL STANDARDS AND BEST PRACTICES 

Adhering to global standards and best practices ensures 

consistency, safety, and efficiency in the detection and 

management of out-of-round (OOR) wheels.  

A. International Standards for OOR Wheel Detection 

Global railway organizations have developed standardized 

methodologies to address OOR wheel challenges. These 

standards provide the framework for designing, 

implementing, and maintaining detection systems. 

i. ISO Standards 

▪ ISO 1005-6:1982: Specifies tolerances for railway wheels 

and axles, including flat spots and out-of-roundness. 

▪ ISO 21940-11:2016: Defines balancing requirements for 

rotating components, which can be applied to railway 

wheels [18]. 

ii. EN Standards 

▪ EN 13262:2020: Covers the requirements for wheels used 

in freight and passenger services, focusing on mechanical 

properties and tolerances. 

▪ EN 15313:2016: Outlines procedures for wheel set 

maintenance, including inspection intervals and defect 

criteria [18]. 

iii. AAR Standards 

▪ Association of American Railroads (AAR) Manual of 

Standards and Recommended Practices: Includes 

guidelines for wheel performance and maintenance, such 

as ultrasonic testing and OOR tolerances [19]. 

B. Best Practices for OOR Wheel Management 

Railway operators and maintenance teams worldwide 

adopt best practices to mitigate the risks associated with OOR 

wheels. 

i. Regular Inspection and Maintenance 

▪ Predictive Maintenance Programs: Utilizing AI and IoT 

technologies for proactive detection and correction of OOR 

conditions before they escalate [20]. 

▪ Case Study: A predictive maintenance program 

implemented in the UK reduced derailment risks by 40% 

(Figure 12). 
 

 

[Fig.12: Maintenance Frequency and Costs for Different 

Detection Technologies] [18] 

ii. Calibration of Detection Systems 

▪ Detection systems, such as vibration-based and optical 

sensors, require periodic calibration to maintain accuracy 

[21]. 

iii. Data Standardization 

▪ Using standardized formats   

for sensor data ensures 

interoperability between 
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systems from different manufacturers. For example, the 

adoption of XML-based data formats is becoming a global 

best practice [22]. 

C. Global Implementation Case Studies 

i. European Union (EU) 

▪ Shift2Rail Initiative: Aims to enhance railway safety by 

implementing advanced OOR wheel detection systems 

across the EU. The initiative emphasizes harmonizing 

standards across member states [23]. 

ii. United States (US) 

▪ Railroads under the Federal Railroad Administration 

(FRA) mandate automated wayside monitoring systems to 

detect wheel defects, including OOR wheels [24]. 

▪ Best Practice: Using hybrid systems combining acoustic 

sensors and optical scanners for enhanced accuracy. 

iii. Asia-Pacific Region 

▪ Countries like Japan and China adopt cutting-edge 

technologies, such as AI-driven OOR detection, integrated 

with high-speed rail operations [25]. 

▪ Best Practice: Deploying IoT-enabled systems for real-

time monitoring across extensive rail networks. 

D. Challenges in Global Standardization 

i. Variability in Standards 

▪ Differences between ISO, EN, and AAR standards can 

create challenges for multinational railway operators. For 

instance, permissible tolerances for OOR wheels vary 

across these standards. 

ii. Adoption Barriers 

▪ High implementation costs and technical expertise 

requirements can hinder the adoption of advanced 

detection systems in developing regions [26] 

iii. Future Harmonization Efforts 

▪ Collaborative efforts between international organizations, 

such as ISO, AAR, and UIC, are crucial for harmonizing 

standards. 

VI. CHALLENGES AND LIMITATIONS 

Despite significant advancements in out-of-round (OOR) 

wheel detection systems, several challenges and limitations 

hinder their widespread adoption and performance 

optimization.  

A. Technical Challenges 

i. Sensor Limitations 

Detection systems heavily rely on sensors, such as 

accelerometers, acoustic sensors, and optical devices, which 

can face issues under extreme environmental and operational 

conditions. 

▪ Example: High-speed trains generate noise and vibrations 

that interfere with sensor accuracy [26]. 

▪ Limitation: Reduced accuracy in detecting subtle OOR 

variations under such conditions. 

ii. Data Processing and Analysis 

The large volume of data generated by IoT-enabled 

systems presents significant challenges in storage, 

processing, and analysis. 

▪ Challenge: Cloud-based systems may face latency issues 

when processing real-time data [28]. 

▪ Impact: Delayed detection and response times. 

▪ Table I: Data processing times for traditional and AI-based 

systems. 

iii. Detection Accuracy in Complex Scenarios 

▪ Detecting OOR wheels in multi-axle trains with high load 

variability is challenging due to overlapping vibration 

signals [29]. 

B. Cost and Maintenance 

i. High Initial Costs 

The deployment of advanced AI- and IoT-enabled 

detection systems involves significant investment in 

infrastructure, sensors, and computational resources. 

▪ Example: Implementing wayside monitoring systems with 

integrated AI can cost over $1 million per installation [30]. 

▪ Impact: Limited adoption in smaller or resource-

constrained rail networks. 

Table-XII: Cost Comparison of Traditional vs. AI-Based 

OOR Detection Systems 

Cost Category 
Traditional OOR Detection 

Systems 

AI-Based OOR Detection 

Systems 

Initial Setup 
Costs 

Low to moderate, as it 

primarily involves basic 

sensor installations. 

High, due to the integration 

of IoT devices, AI models, 

and cloud platforms. 

Maintenance 

Costs 

High, as frequent manual 
inspections and repairs are 

required. 

Low, due to automated 
monitoring and predictive 

maintenance. 

Operational Costs 
Moderate, as it relies on 
manual intervention and 

periodic inspections. 

Low, with automated 
systems reducing human 

involvement and downtime. 

Scalability Costs 

High, as additional hardware 

and manual effort are needed 
for expansion. 

Low, since IoT and cloud-

based systems are 
inherently scalable. 

Failure-Related 

Costs 

High, due to unplanned 

downtime and repair costs. 

Minimal, as predictive 

systems prevent failures 
proactively. 

Training Costs 
Low, as minimal technical 

expertise is required for 

operation. 

Moderate to high, due to the 

need for specialized 

personnel to manage AI 
systems. 

Long-Term Cost 
Efficiency 

Low, as frequent repairs and 

inefficiencies lead to higher 

expenses over time. 

High, with significant cost 

savings through optimized 
maintenance and reduced 

failures. 

Environmental 

Costs 

Higher, due to inefficient 
resource usage and frequent 

repairs. 

Lower, with energy-
efficient and optimized 

operations. 

ii. Maintenance Requirements 

▪ Detection systems, especially those installed along tracks, 

require regular calibration and maintenance to ensure 

accuracy. 

▪ Limitation: Increased downtime and operational costs. 

C. Standardization and Interoperability Issues 

i. Lack of Global Standards 

Discrepancies between ISO, EN, and AAR standards create 

challenges for multinational railway operators. 

▪ Example: Varying tolerances for OOR wheels complicate 

the design of unified detection systems [31]. 

▪ Impact: Limited scalability and 

compatibility. 
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ii. Interoperability Challenges 

▪ Integrating systems from different manufacturers often 

requires additional effort due to non-standardized data 

formats and protocols [32]. 

▪ Figure 4: Diagram showing interoperability issues between 

different OOR detection systems. 

D. Data Security and Privacy Concerns 

i. Vulnerability to Cyberattacks 

IoT-enabled systems is vulnerable to hacking, posing risks 

to data integrity and operational safety. 

▪ Example: A cybersecurity breach could manipulate sensor 

data, leading to incorrect OOR detection and subsequent 

accidents [33]. 

ii. Privacy Issues 

▪ The collection of large datasets raises concerns about the 

privacy of operational information, especially in systems 

managed by multiple stakeholders. 

E. Environmental and Operational Challenges 

i. Extreme Weather Conditions 

▪ Harsh conditions such as snow, rain, and extreme 

temperatures can affect the reliability of sensors and 

monitoring systems. 

▪ Example: Optical sensors may fail to perform accurately 

in foggy or wet conditions [34]. 

ii. High-Speed Operations 

▪ At very high speeds, the dynamic forces acting on wheels 

and sensors make it difficult to capture precise OOR 

measurements. 

F. Limitations in AI and IoT Systems 

i. Dependency on Data Quality 

AI models are only as good as the data they are trained on. 

▪ Challenge: Inadequate or biased datasets can lead to 

inaccurate predictions and false alarms [35]. 

ii. Black-Box Nature of AI Models 

▪ Many AI-based systems, especially deep learning models, 

lack explainability, making it difficult for operators to trust 

their outputs [36]. 

Table-XIII: Summary of Limitations in Current AI-Based Detection Models 

Limitation Description Impact on OOR Detection Potential Solution 

Limited Dataset 
Availability 

Insufficient real-world OOR wheel data for training 
AI models. 

Reduces accuracy and generalization 
of detection systems. 

Develop synthetic datasets or 

increase collaboration for data 

sharing. 

High Computational 

Demand 

Requires significant processing power for model 

training and real-time analysis. 

Limits implementation in resource-

constrained environments like edge 

devices. 

Use optimized algorithms and 

lightweight AI models. 

False Positives and 
Negatives 

Misclassification of wheel conditions in some cases. 
Leads to unnecessary maintenance or 

undetected failures. 
Improve data quality and refine 

classification algorithms. 

Scalability Challenges 
Difficulty in scaling AI systems across large railway 

networks. 

Slows adoption in widespread 

applications. 

Leverage cloud computing and 

modular AI architectures. 

Integration Complexity 
Challenges in integrating AI with existing railway 

systems and IoT frameworks. 
Increases deployment time and costs. 

Standardize system architectures for 
compatibility. 

Sensor Reliability 
Inconsistent sensor readings due to environmental 

factors or wear and tear. 

Affects the accuracy and reliability 

of AI predictions. 

Employ sensor fusion and 

redundancy strategies. 

Lack of Explainability 
Black-box nature of AI models makes it hard to 

interpret results. 
Reduces trust and acceptance by 

operators. 
Utilize explainable AI techniques to 

make predictions transparent. 

Data Privacy Concerns 
Challenges in ensuring the security and privacy of 

collected data. 

Limits data sharing and model 

development. 

Implement robust encryption and 

anonymization methods. 

iii. Scalability of IoT Networks 

▪ Expanding IoT networks to cover large railway networks 

poses challenges in terms of connectivity, power 

consumption, and maintenance [37]. 

VII. FUTURE RESEARCH DIRECTIONS 

Addressing these challenges requires: 

▪ Development of robust and low-maintenance sensor 

technologies. 

▪ Harmonization of global  

standards to facilitate interoperability [38]. 

▪ Implementation of explainable AI models for better 

decision-making. 

▪ Enhanced cybersecurity measures for IoT networks. 

VIII. FUTURE DIRECTIONS 

Advancements in out-of-round (OOR) wheel detection 

systems hold significant potential to revolutionize railway 

safety and efficiency. This section outlines key future 

directions for research, development, and implementation, 

supported by necessary citations, tables, and figures. 

A. Integration of Advanced AI Algorithms 

The development and application of cutting-edge artificial 

intelligence (AI) algorithms will enhance the precision and 

reliability of OOR wheel detection systems. 

i. Machine Learning for Predictive Analytics 

▪ Future Need: Machine learning (ML) models, such as 

support vector machines (SVM) and neural networks, can 

analyze historical data to predict OOR wheel defects 

before they occur [21]. 

▪ Proposed Application: Implementing ensemble ML 

models for multi-variable analysis of wheel wear, 

temperature, and vibration signals. 

ii. Explainable AI (XAI) 

▪ Challenge: The black-box nature of many AI models limits 

user trust. 

▪ Future Direction: Develop explainable AI frameworks to 

enhance transparency and 

interpretability in decision-

making [18]. The Table 

XIV shows comparison 

highlights the advantages 
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and trade-offs of transitioning from traditional AI to 

explainable AI in detection systems, particularly in railway 

safety applications. 

Table-XIV: Comparison of Traditional AI vs. 

Explainable AI in Detection Systems 

Criteria Traditional AI Explainable AI (XAI) 

Interpretability 

Low; operates as a "black-

box" system with limited 

insight into decision-
making. 

High; provides clear 
reasoning behind predictions 

and decisions. 

Trust and 
Adoption 

Limited trust due to lack of 
transparency. 

Higher trust among operators 

and stakeholders due to 

improved interpretability. 

Accuracy 

Often optimized for 

accuracy without 

considering interpretability. 

Slight trade-off in accuracy 
for enhanced explainability. 

Error 

Diagnosis 

Difficult to identify causes 

of errors or 

misclassifications. 

Easier to diagnose and rectify 

errors through detailed 

insights. 

Complexity 
High; difficult for non-

experts to understand or use 

effectively. 

Moderate; user-friendly 
interfaces with explanations 

enhance usability. 

Regulatory 
Compliance 

May face challenges in 

meeting regulatory 
standards requiring 

transparency. 

Facilitates compliance with 

standards and regulations in 
safety-critical systems. 

Computational 

Demand 

Lower; optimized for 
performance without 

additional explainability 

layers. 

Higher; additional resources 

required for generating 
explanations. 

Training 
Requirements 

Requires less training for 

operators but risks blind 

reliance. 

Requires some training to 

interpret explanations but 

improves system reliability. 

Real-World 

Application 

Often used in non-critical or 

experimental systems. 

Preferred for safety-critical 

applications such as railway 

OOR detection. 

Feedback 

Integration 

Limited ability to 
incorporate human feedback 

effectively. 

Allows iterative 
improvements based on 

human insights and feedback. 

B. IoT-Driven Smart Monitoring Systems 

The Internet of Things (IoT) will play a vital role in 

enabling real-time, networked monitoring systems. 

i. Sensor Miniaturization and Energy Efficiency 

▪ Future sensors should be smaller, more energy-efficient, 

and capable of operating autonomously in remote or harsh 

environments [12]. 

▪ Example: Energy-harvesting sensors powered by wheel 

vibrations to ensure sustainability. 

ii. 5G and Edge Computing 

▪ Future Need: Utilize 5G networks for high-speed data 

transmission and edge computing for localized, low-

latency data analysis. 

iii. Blockchain for Data Integrity 

▪ Blockchain technology can ensure data security and 

integrity in IoT systems by providing tamper-proof records 

of OOR detection [13]. 

▪ Impact: Enhanced trust and reliability in railway 

maintenance systems. 

C. Global Standardization Initiatives 

i. Unified Standards for Detection Systems 

▪ Future Goal: Harmonize ISO, EN, and AAR standards to 

establish a unified framework for OOR detection systems 

[1]. 

▪ Impact: Facilitate interoperability and scalability of 

detection technologies across regions. 

ii. Open Data Exchange Frameworks 

▪ Develop standardized data formats and protocols to enable 

seamless integration of detection systems from different 

manufacturers. 

D. Development of Hybrid Detection Systems 

Combining multiple technologies in a single system can 

improve detection accuracy and reliability. 

i. Multi-Sensor Fusion 

▪ Future Need: Combine acoustic, optical, and vibration-

based sensors to enhance detection capabilities under 

varying conditions [16]. 

▪ Example: Hybrid systems that use optical sensors for 

initial detection and vibration  

sensors for detailed analysis. 

ii. AI-Augmented Wearable Devices 

▪ Future concepts include AI-augmented wearable devices 

for track workers to detect wheel defects during routine 

inspections. 

E. Focus on Sustainability and Environmental Impact 

i. Sustainable Materials for Detection Infrastructure 

▪ Use eco-friendly materials for manufacturing detection 

systems to reduce their carbon footprint. 

▪ Example: Deployment of biodegradable sensor 

components [24]. 

ii. Circular Economy in Railway Maintenance 

▪ Recycling and reusing components from outdated detection 

systems will promote a circular economy. 

F. Enhanced Simulation and Testing Frameworks 

i. Virtual Testing Environments 

▪ Develop digital twins of railway networks to simulate the 

performance of OOR detection systems under various 

scenarios [19]. 

ii. AI-Based Failure Prediction Models 

▪ Use generative AI models to simulate potential failure 

modes and their mitigation strategies. 

G. Collaboration between Academia, Industry, and 

Governments 

i. Public-Private Partnerships 

▪ Collaboration between governments and private companies 

will accelerate the development and deployment of 

innovative detection systems [11]. 

ii. Research Consortia 

▪ Establish global research consortia focused on advancing 

OOR wheel detection technologies. 

IX. CONCLUSION 

The following improvements in out-of-round (OOR) wheel 

detection systems are a major milestone towards the safety, 

effectiveness and reliability of global railway networks. This 

wide-ranging review has thoroughly examined the basic 

technological advancements, difficulties, and future 

directions, serving as a guide to  

research and implementation  

on keywords. 
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A. Key Findings 

i. Technological Progress 

▪ Significant strides have been made in the development of 

sensor technologies, AI algorithms, and IoT-enabled 

systems for real-time detection and monitoring of OOR 

wheels. 

▪ Hybrid approaches combining acoustic, vibration, and 

optical sensors have shown superior accuracy compared to 

single-sensor systems. 

▪ Integration of AI and machine learning has revolutionized 

defect prediction and operational decision-making 

processes. 

ii. Challenges 

▪ Despite these advancements, critical challenges such as 

high implementation costs, lack of global standardization, 

cybersecurity vulnerabilities, and technical limitations 

persist. 

▪ Environmental factors, including extreme weather 

conditions, continue to hinder sensor reliability and system 

accuracy. 

iii. Role of Standards and Collaboration 

▪ The absence of unified global standards and 

interoperability frameworks limits the scalability and 

adoption of these technologies across regions. 

B. Implications for the Future 

i. Adoption of Emerging Technologies 

▪ The integration of explainable AI (XAI), 5G networks, and 

edge computing promises to enhance real-time monitoring 

capabilities. 

▪ Blockchain technology holds potential for ensuring data 

security and integrity within IoT-enabled detection 

systems. 

ii. Focus on Sustainability 

▪ Transitioning to sustainable materials and promoting a 

circular economy in railway maintenance will be crucial for 

environmentally friendly operations. 

iii. Standardization and Collaboration 

▪ Unified global standards and collaborative efforts among 

academia, industry, and governments will be essential for 

addressing current limitations and ensuring widespread 

adoption. 

C. Final Remarks 

This review emphasizes the need for a holistic approach 

that combines technological innovation, policy 

standardization, and collaborative frameworks to overcome 

existing challenges in OOR wheel detection systems. Future 

advancements in AI, IoT, and hybrid detection technologies 

will play a critical role in transforming railway safety and 

efficiency. 

By addressing the outlined challenges and leveraging 

emerging opportunities, railway systems can achieve a safer, 

more efficient, and sustainable future. Continued research, 

development, and global cooperation will ensure the 

successful implementation of advanced OOR detection 

systems, contributing significantly to the modernization of 

railway infrastructure worldwide. 
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