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Abstract: This paper presents the hierarchical sliding mode 

control (HSMC)--based stabilization problem of the wheeled 

Acrobot (WAcrobot) system, which combines an actuated wheel 

that rolls in the horizontal plane with an Acrobot consisting of 

two inverted pendulum links. These links are driven by an 

actuator at the second joint and freely rotate in a vertical plane. 

The stabilization problem of the WAcrobot, previously addressed 

using switch-based controllers in many studies, is solved in this 

work by designing a single-stage controller without requiring 

switching steps or time. The design approach comprises two 

parts. First, the system is reduced to a cascaded nonlinear model 

in finite time using the inherent dynamic coupling relationship. 

Second, a two-loop control scheme is employed: the outer loop 

ensures that the actuated state variables track the desired 

response, while the inner loop forces them to exhibit an 

asymptotically stable nature. After the desired design of both 

loops, the asymptotic stability of the overall dynamics is achieved. 

Finally, the theoretical analysis is validated using MATLAB. 

Simulation results demonstrate that the proposed controller 

effectively stabilizes the WAcrobot system at the equilibrium 

points. 

Keywords: Underactuated Systems, WAcrobot, Stabilization, 

HSMC,2-Loop Control 

I. INTRODUCTION

Mechanical systems can be fully actuated, over-

actuated, or underactuated depending on their construction 

[1]. Underactuated systems have fewer control inputs than 

degrees of freedom and are widely applicable in various 

technologies, including space exploration, undersea 

robotics, mobile robotics, and flexible robotics. Robots are 

often designed with more degrees of freedom than control 

inputs to enhance flexibility, reduce costs, and minimize 

actuator faults. Mechanical systems are considered 

underactuated when flexible modes, which are not directly 

actuated, must be controlled [2]. 
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Systems like the Pendubot and Acrobot are intentionally 

designed to create complex nonlinear dynamics for 

advancing control system research.  

However, input reduction introduces nonlinear constraints, 

which are often second-order nonholonomic. This 

complicates the control design of underactuated systems, as 

the system states lie within uncontrollable manifolds of the 

configuration space [3]. 

The Acrobot, as its name suggests, is a planar robot that 

mimics a human acrobat suspended from a bar, attempting 

to swing into a stable inverted position while maintaining a 

grip on the bar. The Wheeled Acrobot (WAcrobot) 

combines an actuated wheel that rolls in the horizontal plane 

with an Acrobot comprising two inverted pendulum links 

driven by an actuator at the second joint, which freely 

rotates in a vertical plane. As a result, the WAcrobot is an 

underactuated, strongly nonlinear system. 

The main control challenge in the Acrobot system is 

swing-up and stabilization, which are inherently difficult. 

Addressing this challenge is important, as the system’s 

complex nonlinear structure and multi-DOF under actuation 

make it a benchmark for nonlinear control theory. This 

paper proposes a novel control design approach for the 

stabilization of the WAcrobot, involving model reduction to 

a cascaded nonlinear system and hierarchical sliding mode 

control (HSMC) design for the low-order nonlinear 

subsystem. The primary contribution is the proposal of a 

one-stage controller based on a two-loop scheme, employing 

HSMC to ensure the asymptotic stability of the overall 

system [4]. Theoretical analysis is validated using 

MATLAB simulations. Underactuated systems have a 

smaller number of control inputs than their degrees of 

freedom. Such kinds of systems  

II. LITERATURE REVIEW

The Acrobot was first introduced and studied by Murray 

and Hauser. Subsequently, several studies have addressed 

control problems of underactuated systems, including the 

Acrobot. A switch-based controller was proposed for the 

global stabilization of the WAcrobot, as described in [3]. 

Researchers designed a two-stage control law to stabilize 

the system. The first stage, based on the Lyapunov function, 

and the second stage, employing feedback linearization, 

were developed to stabilize the overall system. However, 

switch-based controllers rely on switching procedures, and 

determining the switching time for achieving optimal 

transient behavior is challenging. 

X. Xin and M. Kaneda 

addressed the energy-based 

swing-up control problem for 

the Acrobot [5]. An 
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explanation was provided on selecting control parameters to 

either gradually swing the Acrobot to a small random 

neighborhood of the upright equilibrium point or maintain it 

within a set containing a finite number of equilibrium 

points. Numerical simulations using three Acrobots were 

conducted to verify the theoretical results. Analyzing the 

convergence rate of the energy-based controller for the 

Acrobot was identified as a direction for future research. 

The study in [4] proposed a two-loop control method for 

managing the pendubot. Partial feedback linearization and a 

sliding mode controller were jointly used to manage the 

nominal and system under external disturbances. 

In many studies, a nonlinear controller design employing 

multiple sliding surface (MSS) control techniques is 

designed to track the stabilization function required for the 

unstable zero dynamics of an underactuated system. This 

was achieved by converting the system model into a strict 

feedback structure. 

Moreover, hierarchical sliding mode control with state-

dependent switching gains was proposed in [6] for 

stabilizing systems such as inverted pendulums and ball-

beam systems. 

III. SYSTEM MODELING 

For control design, a mathematical model that describes 

the dynamical properties of a system is essential. The 

mathematical model of the WAcrobot is derived by 

calculating its kinetic and potential energy and applying 

Lagrange's equations of motion. 

Lagrange's Equations of Motion: -Lagrange's equation 

of motion for a conservative system is given by: 

 
𝑑

𝑑𝑡

𝜕𝐿

�̇́�
−

𝜕𝐿

𝜕𝑞
= 𝜏  …   (1)                                      

 

Here, 𝑞 is the n-vector of generalized coordinates 𝑞𝑖, τ is 

the n-vector of generalized forces 𝜏𝑖, and the Lagrangian L 

is defined as the difference between the system's kinetic 

energy K and potential energy P: 

𝐿 = 𝐾 − 𝑃 

A. Dynamic Model of the WAcrobot 

Consider the physical model of a WAcrobot system shown 

in Figure 1 below. 

 

 

[Fig.1: Physical Model of WAcrobot] 

The parameters of the WAcrobot system are defined in 

Table 1. 

Table 1: Parameters of the System 

𝜃1(𝑡) The angular position of the wheel 

𝜃2(𝑡) The angular position of the first pendulum 

𝜃2(𝑡) The angular position of the second pendulum 

𝑚 Mass of wheel 

𝑚1 Mass of the first pendulum 

𝑚2 The mass of the second pendulum 

𝜏1(𝑡) Input torque applied on the wheel 

𝜏2(𝑡) Input torque on the second pendulum 

𝑔 Gravitational constant 

𝐽1 Moment of inertia of the wheel 

𝐽2 Moment of inertia of the first pendulum 

𝐽3 Moment of inertia of the second pendulum 

𝐿1 Radius of the wheel 

𝐿2 Length of the first pendulum 

𝐿3 Length of the second pendulum 

𝐿𝐶1 Length of joint one to center of link one 

𝐿𝐶2 Length of joint two to center of link two 

 

The kinetic and potential energy of the WAcrobot system 

can be calculated from its physical model as functions of 

angular position and velocity 

Total kinetic energy=Kinetic energy of the wheel+Kinetic 

energy of the first pendulum+Kinetic energy of the second p

endulum. 

                        𝐾(𝜃, �̇�) =
1

2
�̇�𝑇𝐹(𝜃)�̇�  …   (2) 

 

Where 𝜃 = [𝜃1 𝜃2 𝜃3]
𝑇 is a vector representing the joint 

angular positions of the WAcrobot, and 𝐹(𝜃) is the inertia 

matrix of the system, given by 

 

𝐹(𝜃) = [

𝐹11 𝐹12(𝜃) 𝐹13(𝜃)
𝐹21(𝜃) 𝐹22(𝜃) 𝐹23(𝜃)

𝐹31(𝜃) 𝐹32(𝜃) 𝐹33

] 

Where,{

𝐹11 = 𝜆1, 𝐹22(𝜃) = 𝜆2 + 𝜆4 + 2𝑐𝑜𝑠𝜃3, 𝐹33 = 𝜆4
𝐹12(𝜃) = 𝐹21(𝜃) = 𝜆3𝑐𝑜𝑠𝜃2 + 𝜆5𝑐𝑜𝑠(𝜃2 + 𝜃3)

𝐹13(𝜃) = 𝐹31(𝜃) = 𝜆5𝑐𝑜𝑠(𝜃2 + 𝜃3), 𝜆5 = 𝑚3𝐿1𝐿𝐶3

 

{

𝐹23(𝜃) = 𝐹32(𝜃) = 𝜆4 + 𝜆6𝑐𝑜𝑠𝜃2
𝜆1 = (𝑚1 +𝑚2 +𝑚3)𝐿1

2 + 𝐽1
𝜆2 = 𝑚2𝐿𝑐2

2 + 𝐽2 +𝑚3𝐿2
2

 

{

𝜆3 = (𝑚2𝐿𝑐2 +𝑚3𝐿2)𝐿1
𝜆4 = 𝑚3𝐿𝑐3

2 + 𝐽3
𝜆6 = 𝑚3𝐿2𝐿𝐶3

 

 

Total potential energy = potential energy of wheel + 

potential energy of the first pendulum + potential energy of 

the second pendulum. 
 

𝑃(𝜃) = 𝛾1𝑐𝑜𝑠𝜃2 + 𝛾2𝑐𝑜𝑠(𝜃2 + 𝜃2)  …   (3) 
Where  𝛾1 = (𝑚2𝐿𝑐2 +𝑚3𝐿2)𝑔, 𝛾2 = 𝑚3𝐿3𝑔. 

 

The Euler-Lagrange equations of motion: - The Euler-

Lagrange equation 𝐿(𝜃, �̇�) of the system, which represents 

the difference between the total kinetic energy and the 

potential energy of the system, can be written as follows: 
 

𝐿(𝜃, �̇�) = 𝐾(𝜃, �̇�) − 𝑃(𝜃) 

𝑑

𝑑𝑡

𝜕𝐿(𝜃, �̇�)

𝜕�̇�
−
𝜕𝐿(𝜃, �̇�)

𝜕𝜃
= 𝜏 
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By differentiating the Euler-Lagrange equation with 

respect to each joint angle, Equation 4 is obtained. 

 

{
 
 

 
 
𝑑

𝑑𝑡

𝜕𝐿(𝜃,�̇�)

𝜕𝜃1̇
−

𝜕𝐿(𝜃,𝜃)̇

𝜕𝜃1
= 𝜏1

𝑑

𝑑𝑡

𝜕𝐿(𝜃,�̇�)

𝜕𝜃2̇
−

𝜕𝐿(𝜃,𝜃)̇

𝜕𝜃2
= 0

𝑑

𝑑𝑡

𝜕𝐿(𝜃,�̇�)

𝜕𝜃2̇
−

𝜕𝐿(𝜃,𝜃)̇

𝜕𝜃2
= 𝜏2

 …   (4)                          

Equation 4 can be written in compact form as follows. 

 

𝐹(𝜃)�̈� + 𝐻(𝜃, �̇�) + 𝐺(𝜃) = 𝜏 …   (5)                                  

 

Here, 𝐻(𝜃, �̇�)and 𝐺(𝜃) represent the Coriolis and 

gravitational terms, respectively, and they are defined as 

follows. 

𝐻(𝜃, �̇�)

= [

𝐻1(𝜃, �̇�) = −𝜆3�̇�2
2𝑠𝑖𝑛𝜃2 − 𝜆5(�̇�2 + �̇�3)

2𝑠𝑖𝑛(𝜃2 + 𝜃3)

𝐻2(𝜃, �̇�) = −𝜆6(2�̇�2 + �̇�3)�̇�3𝑠𝑖𝑛𝜃3
𝐻3(𝜃, �̇�) = 𝜆6�̇�2

2𝑠𝑖𝑛𝜃3

] 

 

𝐺(𝜃) = [

𝐺1(𝜃) = 0

𝐺2(𝜃) = −𝛾1𝑠𝑖𝑛𝜃2 − 𝛾2𝑠𝑖𝑛(𝜃2 + 𝜃2)

𝐻3(𝜃, �̇�) = −𝛾2𝑠𝑖𝑛(𝜃2 + 𝜃2)

] 

 

𝜏 = [

𝜏1
0
𝜏2
] 

 

The state-space equation of the overall system can be 

written in a form that facilitates easier manipulation. 

Let,𝑥 = [𝑥1 𝑥2 𝑥3   𝑥4]𝑇 and 𝑧 = [𝑧1 𝑧2]𝑇  

Where 𝑥1 = 𝜃1,𝑥2 = �̇�1, 𝑥3 = 𝜃2, 𝑥4 = �̇�2, 𝑧1 = 𝜃3, 𝑧2 = �̇�3 

Then, the state space form of the system is defined by: 

 

{
�̇�1 = 𝑥2

�̇�2 = ϓ1(𝑥, 𝑧) + 𝜙1(𝑥, 𝑧)𝜏1 + 𝜑1(𝑥, 𝑧)𝜏2
 

{
�̇�3 = 𝑥4

�̇�2 = ϓ2(𝑥, 𝑧) + 𝜙2(𝑥, 𝑧)𝜏1 + 𝜑2(𝑥, 𝑧)𝜏2
 

{
�̇�1 = 𝑧2

�̇�2 = ϓ1(𝑥, 𝑧) + 𝜙1(𝑥, 𝑧)𝜏1 + 𝜑1(𝑥, 𝑧)𝜏2
 

 

Where  ⌈

ϓ1(𝑥, 𝑧)
ϓ2(𝑥, 𝑧)

ϓ3(𝑥, 𝑧)
⌉ = 𝐹−1(𝜃) [

−𝐻1(𝜃, 𝜃)̇

−𝐻2(𝜃, 𝜃) −̇ 𝐺2(𝜃)

−𝐻3(𝜃, 𝜃) −̇ 𝐺3(𝜃)

] 

 

⌈

𝜙1(𝑥, 𝑧) 𝜑1(𝑥, 𝑧)
𝜙2(𝑥, 𝑧) 𝜑2(𝑥, 𝑧)

𝜙2(𝑥, 𝑧) 𝜑3(𝑥, 𝑧)
⌉ = 𝐹−1(𝜃) [

1 0
0 0
0 1

] 

B. Reduced Order State-Space Form 

Since the state-space equations derived above are highly 

complex, reducing them to low-order nonlinear dynamics is 

important. To achieve a reduced-order representation of the 

original system’s state space, the following controller is 

designed [4]. 

 

𝜏2 =
𝑇(𝑧1,𝑧2)−ϓ3(𝑥,𝑧)−𝜙3(𝑥,𝑧)𝜏1

𝜑3(𝑥,𝑧)
  …   (6)                                    

Where 𝑇(𝑧1, 𝑧2)=-𝑟2(𝑧2
1/2

+ 𝑟1
1/2
𝑧1)

1/2 

and 𝑟1, 𝑟2 are positive constants. Using Controller 6, it is 

evident that two nonlinear cascaded systems are obtained, as 

shown in Equations 7 and 8 below. 

 

{
�̇�1 = 𝑧2

�̇�2 = −𝑟2(𝑧2
1/2

+ 𝑟1
1/2
𝑧1)

1/2   …   (7)                                   

{

�̇�1 = 𝑥2
�̇�2 = 𝑓1(𝑥) + 𝑔1(𝑥)𝜏1

�̇�3 = 𝑥4
�̇�4 = 𝑓2(𝑥) + 𝑔2(𝑥)𝜏1

  …   (8)                                              

 

Where    𝑓1(𝑥) =
ϓ1(𝑥,0)𝜑3(𝑥,0)−ϓ3(𝑥,0)𝜑1(𝑥,0)

𝜑3(𝑥,0)
 

 

𝑓1(𝑥) =
ϓ2(𝑥, 0)𝜑3(𝑥, 0) − ϓ3(𝑥, 0)𝜑2(𝑥, 0)

𝜑3(𝑥, 0)
 

 

𝑔1(𝑥) =
𝜙1(𝑥, 0)𝜑3(𝑥, 0) − 𝜙3(𝑥, 0)𝜑1(𝑥, 0)

𝜑3(𝑥, 0)
 

 

𝑔2(𝑥) =
𝜙2(𝑥, 0)𝜑3(𝑥, 0) − 𝜙3(𝑥, 0)𝜑2(𝑥, 0)

𝜑3(𝑥, 0)
 

 

The controller in Equation 6 must be designed carefully to 

asymptotically stabilize the states z in finite time before the 

states x decay to zero. Additionally, the controller is 

designed to decouple x and z. 

IV. CONTROLLER DESIGN 

The most important property of sliding mode control is its 

insensitivity to matched uncertainties acting in the input 

channels [7]. The HSMC method focuses on the hierarchical 

structure of the sliding surface and designs the control law 

based on this structure [8]. This section discusses the design 

of a hierarchical sliding mode controller (HSMC) that 

stabilizes the dynamics described in Equation 8 [9]. To 

design a one-stage controller, a two-loop control method is 

proposed, as illustrated in Figure 2. In this strategy, state 

variables with control inputs 𝑥1 and  𝑥2 are made to track 

the desired response, which is achieved by designing the 

outer loop [10]. The desired response is calculated such that 

the states with no control inputs exhibit asymptotic stability. 

This behavior is ensured by designing the inner loop, 

thereby stabilizing the overall dynamics asymptotically [11]. 

 

[Fig.2: Proposed System Controller] 

The following two sliding 

surfaces are considered for 

each subsystem of the 

dynamics in Equation 9, and a 

http://doi.org/10.35940/ijies.E7383.11121224
http://www.ijies.org/
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linear combination of these sliding surfaces is constructed as 

a hierarchical structure. 

 

𝑠1 = 𝑐1𝑥3 + 𝑥4 

 

𝑠2 = 𝑐2𝑥1𝑑 + �̇�1𝑑 

 

𝑠 = 𝑐𝑠1 + 𝑠2   …   (9)                 
 

Using exponential reaching law and derivation of the 

sliding surface with respect to time gives Equation 10. 

 

�̇� = 𝑐�̇�1 + �̇�2 = −𝑤𝑠 − 𝑣𝑠𝑎𝑡(𝑠)  …   (10)                           
 

where 𝑤 and 𝑣 , are positive constants. From Equation 10 

and setting 𝜏1 =
�̈�1𝑑−𝑓1

𝑔1
  at infinite time, the desired state 

dynamics for the inner loop can be written as Equation 11 

below. 

 

Where,𝑥1𝑑 , is the desired angular position of joint one and 

its second derivative with respect to time can be given by 

Equation 11. 

 

�̈�1𝑑 =
−𝑤𝑠−𝑣𝑠𝑎𝑡(𝑠)−𝑐𝑐1𝑥4−𝑐𝑓2+𝑐(

𝑓1𝑔2
𝑔1

)−𝑐2�̇�1𝑑

1+𝑐
𝑔2
𝑔1

  …   (11)                         

 

The closed loop of the second subsystem will be, 

 

{
�̇�3 = 𝑥4

�̇�4 = 𝑓2 −
𝑔2

𝑔1
𝑓1 +

𝑔2

𝑔1
�̈�1𝑑

  …   (12)                             

 

Let 𝑥5 = 𝑥1𝑑 , 𝑥6 = �̇�1𝑑 ,  then Equation 12 can be written 

as a set of first-order differential equations. 

 

{
 
 

 
 

�̇�3 = 𝑥4

�̇�4 = 𝑓2 −
𝑔2
𝑔1
𝑓1 +

𝑔2
𝑔1
𝜒

�̇�5 = 𝑥6
�̇�6 = 𝜒

  …   (13) 

 

Where 𝜒 = �̈�1𝑑,. The positive constants 𝑐1, 𝑐2, 𝑐, 𝑤, 𝑣 

should be selected so that the Jacobin matrix of Equation 13 

at 

 𝑠 = 0,is Hurwitz to guarantee the overall system 

asymptotic stability. 

V. RESULTS AND DISCUSSION 

As MATLAB is the most powerful tool in system 

dynamics and control, the proposed controller should be 

tested and verified through simulation before practical 

implementation. This part shows the results obtained and 

depicted by the figures below. Appropriate controller 

parameters are chosen by trial and error until acceptable 

performance is achieved. 

 The following physical parameters of the WAcrobot are 

selected for simulation. 

Table 2: Parameters Used for Simulation 

Parameter Value 

𝑚1 1.22 kg 

𝑚2 0.28 kg 

𝑚3 0.72 kg 

𝐽1 0.00153𝑔.𝑚2 

𝐽2 0.000598𝑔.𝑚2 

𝐽3 0.013138𝑔.𝑚2 

𝐿1 0.05 m 

𝐿2 0.15 m 

𝐿3 0.45 m 

𝐿𝑐2 0.075 m 

𝐿𝑐3 0.225 m 

𝑣 0.002 

𝑤 10 

𝑐1 11 

𝑐2 0.9 

𝑐 41 

𝑟1, 𝑟2 1,5 

 

The simulation result shows stabilization of both links is 

achieved as soon as the WAcrobot stops moving without 

using the switching controller. 

 

 

[Fig.3: Angular Position and Speed of Wheel] 

 

[Fig.4: Angular Position and Speed of Joint 1] 

 

 [Fig.5: Angular Position and Speed of Joint 2] 

 As explained in section B and  

by the controller in Equation 6, 

the angular position of joint 2 

must decay faster than others 
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and the simulation result reaffirms this. 

 

 

[Fig.6: Control Inputs and Sliding Surface] 

VI. CONCLUSION 

In general, this paper proposed the stabilization of 

WAcrobot using a one-stage controller. After reducing the 

model of the system to a low-order nonlinear cascaded 

system, a two-loop controller scheme that uses HSMC is 

designed to provide asymptotic stability of the overall 

system. The controller parameters were chosen by trial and 

error which is cumbersome, and the evolutionary algorithms 

should be applied to obtain the optimum values. Estimation 

of nonlinearities using observers should be included in this 

area since unmodeled dynamics exist in a real system. 
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